

Florida Chamber's 28th Annual Environmental Permitting Summer School

LOW IMPACT DEVELOPMENT FOR ERP, TMDL, NPDES, NNC CREDITS

MARTY WANIELISTA STORMWATER MANAGEMENT ACADEMY JULY, 2014 MARCO ISLAND WWW.STORMWATER.UCF.EDU Florida Environmental Network, Inc

PURPOSE OF PRESENTATION IS TO:

- Introduce BMPTRAINS... Best Management Practices used for Treatment and calculations for Removal on an Annual basis Involving Nutrients in Stormwater
- Describe the BMPTRAINS program to assist in the Design and Analysis of stormwater BMPs for nutrient removal.
- Show examples using BMPTRAINS.
- Understand BMPTRAINS as used for a basis of design, analysis, and review for ERP permits and BMAP and TMDL program estimates.

Best Management Practices Selection BMPTRAINS

BMPTRAINS Available from: www.stormwater.ucf.edu and www.SMADAONLINE.COM for legacy programs

VALUE OF BMPTRAINS

- Quantification of information from many sources into one relatively easy to use computer program.
- Assists in the selection from among 15 BMPs. There is also a user defined BMP for those BMPs not always generally acceptable.
- Program inputs cover a wide range of Florida conditions, including both meteorological and land use.
- High acceptance by WMDs for ERPs. Also can have value in BMAP, TMDL and impaired water situations.
- Flexible program, some default values can be changed but only with agreement with regulatory agencies.

BMPTRAINS MODEL AND USERS MANUAL

Available from: www.stormwater.ucf.edu

BMPTRAINS Stormwater Best Management Practices Analysis Model (Version 7.3) Model, and User's Manual

Example Problems
Introduction
Example problem # 1 - swale - specified removal efficiency of 80%
Example problem # 2 - retention basin - pre vs. post-development loading
Example problem # 3 - retention basin - specified removal efficiency of 75%
Example problem # 4 - wet detention - pre vs. post-development loading with harvesting
Example problem # 5 - wet detention after and in series with retention system (retention basin,
exfiltration trench, swales, retention tree wells, pervious pavement, etc.)
Example problem # 6 - retention systems in series - pre vs. post-development loading
Example problem # 7 - wet detention systems in series - pre vs. post-development loading
Example problem # 8 – limited area for treatment and benefits of co-mingling treatment
Example problem # 9 - vegetated natural buffer in series with wet detention
Example problem # 10 – Use of Rain (Bio) Gardens101
Example problem # 11 – Three Catchments 110
Example problem # 12 – Four Catchments
Example problem # 13 – BMP Analysis
Example problem # 14 – BMP Analysis for Offsite Drainage from Natural Areas
Example problem # 15 – Different N and P removal efficiencies specified

LITERATURE REVIEW FROM THE USER'S MANUAL

Literature Review	2
Jordan/Falls Lake Stormwater Nutrient Load Accounting Model	2
BMP SELECT Model	3
EPA Clinton River Site Evaluation Tool (SET) and National Stormwater Calculator	5
Virginia Runoff Reduction Method Worksheet	7
Department of Environmental Services (DES) Pollutant Loading Spreadsheet Model	9
Stormwater Best Management Practice Design Workbook	11
Stormwater Management and Design Aid (SMADA)	12

BMPTRAINS: Allows various sizes of treatment, more than 15 BMPs, and series/parallel configurations

COMPARISON OF MODELS BASED ON BMPS

Stormwater Model / BMPs	Retention inc. Bioretention	Dry Detention	Swale	Green Roof	Filter Strip inc. Grass Buffer	Permeable Pavement	Sand Filter	Water Harvesting	Wet Detention	Wetland	Rain Garden inc. Tree Wells	Exfiltration	
Jordan/Falls Lake Model	x	X	x	x	x	х	x	x	x	x			Most Models (For a single B
BMP SELECT Model	x	x	x		x	x	x		x	x			U U
Clinton River SET	x	x	x	x	x	х	x		x				BMPTRAINS is
Virginia Runoff Reduction Method	x	x	x	x		X			x				Parallel Config
Worksheet													
DES Simple Method Pollutant Loading Spreadsheet Model ¹	x	x	x	x	x	х	x	x	x	x			
													However
Colorado	X	X	X			X	X	v	X	X	X		USER INPUT to
BMPTRAINS		x	x x	x	x	x	x			-	x	x	BMPTRAINS

ost Models are r a single BMP.

APTRAINS is used r Series and arallel Configurations

NAVIGATING and INFORMATION for the BMPTRAINS Model

Enable	Example NAVIC	GATION	BUTTON		
Macros	Stormwater BMP Treatment Trains [BM	PTRAINS©]	CLICK HERE TO START	HELP - INTRODUCTION	
		INTRO	DDUCTION PAGE	HELP AND BACKGROUND	VIDEOS
EXCEL	Central Florida	Model requires	s the use of Excel 2007 or newer	1) There is a users manual to help navigate this program and it is available at www.stormwater.ucf.edu	
Newer	This program is compiled from stormwater management publications and deliberations during a two year review of the stormwater rule in the State of Florida. Input from the members of the Florida Department of Environmental Protection Stormwater Review	UNWERSTRY	P CENTRAL FLORIDA	2) This spreadsheet is best viewed at 1280 BY 1080 PIXELS screen resolution. If the maximum resolution of your computer screen is lower than 1280 BY 1080 PIXELS you can adjust the view in the Excel VIEW menu by zooming out to value smaller than 100 PERCENT.	
	Technical Advisory Committee and the staff and consultants from the State Water Management Districts is appreciated.	Mana	agement	3) This spreadsheet has incorporated ERROR MESSAGE WINDOWS. Your analysis is not valid unless ALL ERROR MESSAGE WINDOWS are clear.	
	The State Department of Transportation provided guidance and resources to compile this program. The Stormwater Management Academy is responsible for the content of this program.	ACA "Managed Stor	DEMY	4) PRINTING INSTRUCTIONS: Print the page to MICROSOFT OFFICE DOCUMENT IMAGE WRITER (typically the default) or ADOBE PDF, save the page as an image document, then print the document you saved.	
				5) Click on the button located on the top of this window titled CLICK HERE TO START to begin the analysis.	
	Disclaimer: These workbooks were create accuracy of the internal calculations. If im	ed to assist in the provements are with spe	ractice calculations. All users are responsible for validating the -mail Marty Wanielista, Ph.D., P.E. at martin.wanielista@ucf.edu s can be made.		
	The authors of This	this program were (is version 7.3 of the HELP - HYDI	Mike Hardin, and Ikiensinma Gogo-Abite. . Comments are appreciated. Y PROGRAMS	HELP VIDEOS	

RAINFALL AND TYPE OF ANALYSIS WORKSHEET

and the type of analysis (**drop down menu**) activated by "clicking" twice.

BMP EFFECTIVENESS (A PARTICULAR DESIGN, BMAP, LIMITING AREA, ETC.)

	CLICK ON CELL BELOW TO SELECT
Meteorological Zone (Please use zone map):	
Mean Annual Rainfall (Please use rainfall map):	Inches
	CLICK ON CELL BELOW TO SELECT
Type of analysis:	BMP analysis
Treatment efficiency (N, P) (leave empty if net improvement o used):	r BMP analysis is %

SPECIFY A % REMOVAL (TMDL OR COMPENSATORY PROGRAM TARGET)

POST = PRE (NET IMPROVEMENT)

GENERAL SITE INFORMATION PAGE RAINFALL AND TYPE OF EFFECTIVENESS ANALYSIS

VIEW RAINFALL DATA

Navigation Buttons For

View Zone Maps

View Mean Annual Rainfall Map

RAINFALL DISTRIBUTIONS

 Rainfall distributions are regionally different.

BASIC PRINCIPLES

Inter-Event Dry Period

WATERSHEDS CATCHMENT INPUTS

WATERSHED	CHARACTERISTICS	GO TO STORMWATER TREATEMENT ANALY									
SELECT CATCH	IMENT CONFIGURATION	CLICK ON CELL BELOW TO SELECT CONFIGURATION									
OLLEGT GATCI											
CATCHMENT NO.1 CHARAC	CTERISTICS:		١	If mixe	d land uses	(side calcu	lation)				
1	CLICK ON CELL BELOW TO SEI	ECT		Land use	Area Acres	non DCIA CN	%DCIA				
Pre-development land use:	Multi-Family: TN=2.230 TP=0.	520			Drop Do	own Menu					
with default EMCs	CLICK ON CELL BELOW TO SEI	ECT				1					
Post-development land use:	Highway: TN=1.640 TP=0.22	0	Ł			own Menu					
with default EMCs				Tota	al						
Total pre-development catchn	nent area:		0.55	AC							
Total post-development catch	ment or BMP analysis area:		0.55	AC							
Pre-development Non DCIA C	\$N:	8	0.00		4						
Pre-development DCIA percer	ntage:		0.00	%		Pre ar	nd Post				
Post-development Non DCIA (CN:	8	0.00	•							
Post-development DCIA perce	entage:	10	0.00	%		aata	INPUTS				
Estimated Area of BMP (used	for rainfall excess not loadings)		0.03	AC							

LOADING RESULTS & CHANGE DATA

	Dive Newsbarr	luces de la c										
	Blue Numbers =	Input data										
	Red Numbers =	Answers										
Pre-development Ar	nnual Mass Loading - Nitrogen:	0.	886	kg/year								
Pre-development Ar	development Annual Mass Loading - Phosphorus:											
Post-development A	Annual Mass Loading - Nitrogen:		3.	751	kg/year							
Post-development A	Annual Mass Loading - Phosphoru	IS:	0.	503	kg/year							
	OVERWRITE DEFAU	JLI CONCENTRATIONS:										
	PRE:	1										
	EMC(N): mg/L		mg/L									
	EMC(P): mg/L		mg/L									

NOTE: Changes can be made to the default values and "carry" to the end

EMC DEFAULT VALUES 2010

	Event Mean Co	ncentration (mg/l)
CATEGORY	TOTAL Nitrogen	TOTAL Phosphorus
Low-Density Residential ¹	1.51	0.178
Single-Family	1.87	0.301
Multi-Family	2.1	0.497
Low-Intensity Commercial	1.07	0.179
High-Intensity Commercial	2.2	0.248
Light Industrial	1.19	0.213
Highway	1.37	0.167
Agricultural - Pasture	3.3	0.621
Agricultural - Citrus	2.07	0.152
Agricultural - Row Crops	2.46	0.489
Agricultural - General Agriculture ²	2.79	0.431
Undeveloped	1.15	0.055
	4.40	0.45

New Data Available

v. wean of pasture, citrus, and row crop land uses

UNDEVELOPED 2007 DATA

New Data Available

LAND				TOTAL	TOTAL
Agricultura	I - Citrus:	TN=2.240	TP=0.183	2.240	0.183
Agricultura	I - General:	TN=2.790	TP=0.431	2.790	0.431
Agricultura	I - Pasture:	TN=3.470	TP=0.616	3.470	0.616
Agricultura	I - Row Cro	ps: TN=2.6	50 TP=0.593	2.650	0.593
Conventior	al Roofs: T	N=1.050 TF	1.050	0.120	
High-Intens	sity Comme	ercial: TN=2	2.400	0.345	
Highway: 7	<u>FN=1.640 TI</u>	P=0.220		1.640	0.220
Light Indus	strial: TN=1.	200 TP=0.2	260	1.200	0.260
Low-Densi	ty Resident	ial: TN=1.6	10 TP= 0.191	1.610	0.191
Low-Intens	ity Comme	rcial: TN=1.	180 TP=0.179	1.180	0.179
Mining / Ex	xtractive: Th	<mark>√=1.180 TP</mark>	=0.150	1.180	0.150
Multi-Fami	ly: TN=2.23	0 TP=0.520	0	2.320	0.520
Single-Fan	nily: TN=2.0	70 TP=0.3	27	2.070	0.327
Undevelop	ed - Dry Pra	airie: TN=1.	950 TP=0.107	1.950	0.107
Undevelope	ed - Hydric	Hammock:	TN=1.072 TP=0.0	1.072	0.026
Undevelope	ed - Marl Pr	airie: TN=0	.603 TP=0.010	0.603	0.010
Undevelope	ed - Mesic I	-latwoods:	TN=1.000 TP=0.03	1.000	0.034
Undevelope	ed - Mixed I	Hardwood:	TN=0.288 TP=0.50	0.288	0.501
Undevelope	ed - Rudera	I/Upland Pi	ne: TN=1.318 TP=	1.318	0.347
Undevelope	ed - Scrubb	y Flatwood	s: TN=1.023 TP=0.	1.023	0.027
Undevelope	ed - Upland	Hardwood:	TN=0.891 TP=0.2	0.891	0.269
Undevelope	ed - Upland	Mixed: TN:	=0.676 TP=2.291	0.676	2.291
Undevelope	ed - Wet Fla	atwoods: Th	N=1.175 TP=0.015	1.175	0.015
Undevelope	ed - Wet Pr	airie: TN=0	.776 TP=0.009	0.776	0.009
Undevelop	ed - Xeric H	ammock: T	N=1.318 TP=2.816	1.318	2.816
Undevelope	ed - Xeric S	crub: TN=1	1.158	0.096	
Apopka Op	pen Space/I	Recreation/	Fallow Crop: TN=1	1.100	0.050
Apopka Fo	prests/Aban	doned Tree	Crops: TN=1.250	1.250	0.080
Undevelop	ed / Rangela	and / Fores	t: TN=1.150 TP=0.	1.150	0.055

WATERSHEDS

CATCHMENT CONFIGURATIONS

UP TO 15 CONFIGURATIONS

2

3

O - Mixed-4 Catchment- Parallel- Series

Up to 3 BMPs in Each catchment with no increase in catchment area between the BMPs

Μ

Ν

N - Mixed-4 Catchment-2 Series-2 Parallel

MEAN ANNUAL RUNOFF

(RESULTS USING 116 RAINFALL STATIONS IN THE STATE, MANY YEARS OF DATA)

	Zone 1 Mean Annual Runoff Coefficients (C Values) as a Function of DCIA Percentage and Non-DCIA Curve Number (CN)																				
NDCIA CN										Pe	rcent D	CIA									
	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	0.006	0.048	0.090	0.132	0.175	0.217	0.259	0.301	0.343	0.386	0.428	0.470	0.512	0.554	0.596	0.639	0.681	0.723	0.765	0.807	0.849
35	0.009	0.051	0.093	0.135	0.177	0.219	0.261	0.303	0.345	0.387	0.429	0.471	0.513	0.555	0.597	0.639	0.681	0.723	0.765	0.807	0.849
40	0.014	0.056	0.098	0.139	0.181	0.223	0.265	0.307	0.348	0.390	0.432	0.474	0.515	0.557	0.599	0.641	0.682	0.724	0.766	0.808	0.849
45	0.020	0.062	0.103	0.145	0.186	0.228	0.269	0.311	0.352	0.394	0.435	0.476	0.518	0.559	0.601	0.642	0.684	0.725	0.767	0.808	0.849
50	0.029	0.070	0.111	0.152	0.193	0.234	0.275	0.316	0.357	0.398	0.439	0.480	0.521	0.562	0.603	0.644	0.685	0.726	0.767	0.808	0.849
55	0.039	0.079	0.120	0.161	0.201	0.242	0.282	0.323	0.363	0.404	0.444	0.485	0.525	0.566	0.606	0.647	0.687	0.728	0.768	0.809	0.849
60	0.052	0.092	0.132	0.172	0.212	0.252	0.291	0.331	0.371	0.411	0.451	0.491	0.531	0.570	0.610	0.650	0.690	0.730	0.770	0.810	0.849
65	0.069	0.108	0.147	0.186	0.225	0.264	0.303	0.342	0.381	0.420	0.459	0.498	0.537	0.576	0.615	0.654	0.693	0.732	0.771	0.810	0.849
70	0.092	0.130	0.167	0.205	0.243	0.281	0.319	0.357	0.395	0.433	0.471	0.508	0.546	0.584	0.622	0.660	0.698	0.736	0.774	0.812	0.849
75	0.121	0.158	0.194	0.230	0.267	0.303	0.340	0.376	0.412	0.449	0.485	0.522	0.558	0.595	0.631	0.667	0.704	0.740	0.777	0.813	0.849
80	0.162	0.196	0.230	0.265	0.299	0.334	0.368	0.402	0.437	0.471	0.506	0.540	0.574	0.609	0.643	0.678	0.712	0.746	0.781	0.815	0.849
85	0.220	0.252	0.283	0.315	0.346	0.378	0.409	0.441	0.472	0.503	0.535	0.566	0.598	0.629	0.661	0.692	0.724	0.755	0.787	0.818	0.849
90	0.312	0.339	0.366	0.393	0.419	0.446	0.473	0.500	0.527	0.554	0.581	0.608	0.634	0.661	0.688	0.715	0.742	0.769	0.796	0.823	0.849
95	0.478	0.496	0.515	0.533	0.552	0.571	0.589	0.608	0.626	0.645	0.664	0.682	0.701	0.719	0.738	0.757	0.775	0.794	0.812	0.831	0.849
98	0.656	0.666	0.676	0.685	0.695	0.705	0.714	0.724	0.734	0.743	0.753	0.763	0.772	0.782	0.792	0.801	0.811	0.821	0.830	0.840	0.849

INTERPOLATING NIGHTMARE

NDCIA CN			1	1	1			1		Pe	ercent D(CIA
	0	5	10	15	20	25	30	35	40	45	50	55
30	0.006	0.048	0.090	0.132	0.175	0.217	0.259	0.301	0.343	0.386	0.428	0.470
35	0.009	0.051	0.093	0.135	0.177	0.219	0.261	0.303	0.345	0.387	0.429	0.471
40	0.014	0.056	0.098	0.139	0.181	0.223	0.265	0.307	0.348	0.390	0.432	0.474
45	0.020	0.062	0.103	0.145	0.186	0.228	0.269	0.311	0.352	0.394	0.435	0.476
50	0.029	0.070	0.111	0.152	0.193	0.234	0.275	0.316	0.357	0.398	0.439	0.480
55	0.039	0.079	0.120	0.161	0.201	0.242	0.282	0.323	0.363	0.404	0.444	0.485

HISTORY : HISTOGRAM (PROBABILITY DISTRIBUTION) Wanielista, Stormwater Management, Ann Arbor Science, 1978.

• N=130 events per year

Hourly Data Used for Central Florida sites over at least 15 years

VOLUME CAPTURED USING LIMITED NUMBER OF STATIONS = 80% CAPTURE

Using probability basic principles

Volume Abstracted =
$$\sum_{i}^{\text{Abstraction Vol}} P(i)_i \overline{x}_i n + \sum_{i=\text{Abstraction Vol}}^{\infty} P(i)_i (\text{Abstraction Vol.})(n)$$

Where the first term is the Expected Value of the abstraction volume up to the abstraction (retention) depth, and the second term the abstraction volume for all storm events greater than or equal to the retention depth.

National publication of this principle in 1978, Stormwater Management, Ann Arbor Science, Wanielista Recently, simulations showed that the capacity of the BMP may not be available for all storms and long term simulations were done to refine the capture effectiveness (Harper and Baker, FDEP, 2007)

METHODOLOGY FOR RETENTION SYSTEMS

Mean Annual Mass Removal Efficiency table from Appendix D of the evaluation report (1 of 80):

NDCIA										Percer	t DCIA									
CN	5	10	15	20	25	3	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	86.2	81.3	73.3	65.5	58.7	53.0	48.3	44.2	40.8	37.9	35.3	33.1	31.1	29.4	27.8	26.4	25.1	24.0	22.9	21.9
35	81.6	78.7	71.7	64.5	58.0	52.5	47.9	44.0	40.6	37.7	35.2	33.0	31.0	29.3	27.8	26.4	25.1	23.9	22.9	21.9
40	76.4	75.5	69.6	63.1	57.1	51.9	47.4	43.6	40.3	37.5	35.0	32.9	30.9	29.2	27.7	26.3	25.1	23.9	22.9	21.9
45	70.7	71.7	67.2	61.4	55.9	51.0	46.8	43.1	40.0	37.2	34.8	32.7	30.8	29.1	27.6	26.3	25.0	23.9	22.9	21.9
50	64.7	67.5	64.2	59.4	54.5	50.0	46.0	42.6	39.5	36.9	34.6	85	30.7	29.0	27.5	26.2	25.0	23.9	22.9	21.9
55	58.6	62.8	60.9	57.0	52.7	48.7	45.1	41.8	39.0	36.5	34.2	32.3	30.5	28.9	27.4	26.1	24.9	23.9	22.9	21.9
60	52.8	57.8	57.1	54.2	50.7	47.1	43.9	40.9	38.3	35.9	33.8	31,9	30.2	28.7	27.3	26.0	24.9	23.8	22.8	21.9
65	47.3	52.6	53.0	51.1	48.3	45.3	42.5	39.8	37.4	35.3	33.3	31.5	29.9	28.4	27.1	99. 123	24.8	23.8	22.8	21.9
70	42.2	47.3	48.6	47.6	45.6	43.2	40.8	38.5	36.4	34.4	32.6	31.0	29.5	28.1	26.9	25.7	24.7	23.7	22.8	21.9
75	37.8	42.2	43,9	43.7	42.4	40.7	38.8	36.9	35.1	33.4	31.8	30,4	29.0	27.8	26.6	15 19	24.5	23.6	22.7	21.9
80	34.0	37.5	39.1	39.4	38.8	37.7	36.4	34.9	33.5	32.1	30.8	29.5	28.3	27.2	26.2	25.2	24.3	23.5	22.7	21.9
85	30.8	33.1	34.3 34	34.8	34.7	34,2	34 33	32.5	31.4	30.4	29.4	28.4	27.4	26.5	25.7	24.8	24.1	23.3	22.6	21.9
90	27.9	29.2	29.9	30.3	30.3	30.2	29.8	29.3	28.8	28.2	27.5	26.8	26.2	25.5	24.9	24.2	23.6	23.0	22.5	21.9
95	25.3	25.6	25.8	25.9	26.0	25.9	25.8	25.6	25.4	25.2	24.9	24.6	24.3	24.0	23.6	23.3	23.0	22.6	22.3	21.9
98	23.8	23.8	23.8	23.7	23.7	23.6	23.5	23.4	23.3	23.2	23.1	23.0	22.9	22.8	22.6	22.5	22.4	22.2	22.1	21.9

Mean Annual Mass Removal Efficiencies for 0.25-inches of Retention for Zone 1

INTERPOLATING DIFFICULTIES (NOT LINEAR BETWEEN RETENTION DEPTHS) Harper and Baker, FDEP 2007

NDCIA Percent DCIA CN 60 10 20 25 30 35 40 45 50 55 65 70 80 5 15 75 65.5 53.0 44.2 33.1 29.4 26.4 30 860 81.3 73.3 58 48.3 40.837.9 35.3 31 35 52.5 37.7 33.0 29.3 26.4 81.6 78.7 64.5 58.0 44.0 40.6 35.2 31.0 71.747.9 27.8 43.6 37.5 32.9 40 69.6 63.1 51.9 35.0 30.9 29.2 26.3 76.475.5 57.1 47.440.3 45 32.7 61.4 55.9 51.0 43.1 37.2 34.8 29.1 27.6 26.3 70.7 71.7 67.2 46.8 40.0 30.8 50 59.4 50.0 42.6 36.9 32.5 29.0 26.2 64 67.5 64. 54.546.039.534.630 55 60.9 48.7 41.8 36.5 32.3 30.5 28.9 26.1 58.6 62.8 57.0 52.7 45.1 39.0 34.2 27.431.9 54.2 40.9 35.9 28.7 60 52.8 57.8 57.1 50.1 47.143.9 38.3 33.8 30.2 27.326.0 39.8 28.4 65 47.3 52.6 53.0 51.1 48.3 45.3 42.5 37.4 35.3 33.3 31.5 29.9 27.1 25.9 70 42.2 47.3 48.6 47.6 45.6 43.2 40.838.5 36.434.4 32.6 31.0 29.528.1 26.925.7 75 37.8 42.2 43.9 43.7 42.4 40.7 38.8 36.9 35.1 33.4 31.8 30.4 29.0 27.8 26.6 25.5 80 34.0 37.5 39.1 39.4 37.7 34.9 32.1 30.8 29.5 25.2 38.8 36.433.5 28.327.226.2 85 30.8 33.1 34.3 34.8 34.2 32.5 30.4 29.4 28.4 26.5 25.7 24.8 34.7 33.4 31.4 27.490 30.3 29.3 28.2 26.8 29.2 29.9 30.2 28.8 25.524.2 27.9 30.3 29.8 27.526.3 24.9 95 25.6 25.8 25.9 25.9 25.6 25.2 24.6 24.0 23.3 25.3 26.0 25.8 25.424.9 24.3 23.6 98 23.8 23.8 23.8 23.6 23.423.2 23.022.5 22.8

Mean Annual Mass Removal Efficiencies for 0.25-inches of Retention for Zone 1

Mean Annual Mass Removal Efficiencies for 0.50-inches of Retention for Zone 1

NDCIA	Percent DCIA															
CN	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
30	91.8	91.5	88.3	84.0	79.5	75.0	70.7	66.6	62.9	59.6	56.5	53.6	51.1	48.7	46.6	44.6
35	88.2	89.1	86.6	82.8	78.6	74.3	70.1	66.2	62.6	59.3	56.3	53.5	51.0	48.7	46.5	44.6
40	84.0	86.3	84.4	81.2	77.4	73.4	69.4	65.7	62.2	59.0	56.0	53.3	50.8	48.5	46.4	44.5
45	79.6	82.9	81.9	79.3	75.9	72.2	68.5	65.0	61.7	58.6	55.7	53.0	50.6	48.4	46.3	44.4
50	74.8	79.1	79.0	77.0	74.1	70.8	67.4	64.1	61.0	58.0	55.3	52.7	50.4	48.2	46.2	44.3
55	70.1	74.9	75.6	74.2	71.9	69.1	66.1	63.0	60.1	57.3	54.7	52.3	50.0	47.9	46.0	44.2
60	65.5	70.4	71.7	71.1	69.4	67.0	64.4	61.7	59.1	56.5	54.1	51.8	49.6	47.6	45.8	44.0
65	61.0	65.8	67.5	67.6	66.4	64.7	62.5	60.2	57.8	55.5	53.3	51.1	49.1	47.2	45.5	43.8
70	56.7	61.1	63.1	63.6	63.1	61.9	60.2	58.3	56.3	54.3	52.3	50.3	48.5	46.8	45.1	43.5
75	52.7	56.6	58.6	59.3	59.3	58.6	57.5	56.0	54.4	52.7	51.0	49.3	47.7	46.1	44.6	43.2
80	49.1	52.2	54.1	55.0	55.2	54.9	54.2	53.2	52.1	50.8	49.4	48.0	46.6	45.3	44.0	42.7

INTERPOLATING DIFFICULTIES (NOT LINEAR BETWEEN RETENTION DEPTHS)

.25 inch
Percen
50
37.9
37.7
37.5
37.2

0.50 inch
Percent
50
59.6
59.3
59.0
58.6

METHODOLOGY for RETENTION DESIGN Examples Showing Climatological Differences in Design

Central and east central Florida

Pan handle of Florida

Effectiveness increases with the depth of retention and rate of increase decreases with depth BUT varies within the STATE for a specific removal effectiveness

WHAT TO DO ABOUT SENSITIVE AREAS? LIKE ESTUARIES AND SPRINGS

- The BMPTRAINS allows for options to improve water quality before it enters into the groundwater that discharges to springs or estuaries.
- Remove pollutants from surface flows using treatment trains, reactive media, chemical treatment, and stormwater reuse.
- For infiltration BMPs including Retention Basins.
 - Removed the pollutant before it enters the ground
 - Bottom of basins (Marion County)
 - Swales with reactive media

METHODOLOGY FOR WET DETENTION SYSTEMS

15 BMPS AND ONE USER DEFINED

Select one of the BMPs below to analyze efficiency or review the summary data.									
RETENTION BASIN	WET DETENTION	EXFILTRATION TRENCH	RAIN (BIO) GARDEN	SWALE	USER DEFINED BMP				
PERVIOUS PAVEMENT	STORMWATER HARVESTING	FILTRATION including Up-Flow Filters	LINED REUSE POND & NOTE !!!: All individual system must be sized prior to being analyzed in conjunction with other systems. Please read instructions in the CATCHMENT AND						
GREENROOF	RAINWATER HARVESTING	FLOATING ISLANDS WITH WET DETENTION	TREATMENT SUMMARY RESULTS tab for more information.						
VEGETATED NATURAL BUFFER	VEGETATED FILTER STRIP	VEGETATED AREA Example tree well	CATCHMENT AND TREATMENT SUMMARY RESULTS						

15 BMPs and 17 NAVIGATION BUTTONS

BMP TREATMENT TRAIN CREDITS WHEN THREE EFFICIENCIES ARE IN SERIES

M = 100 [$1 - {(1-0.5)(1-0.4)(1-.33)}$] = 100[1 - .20] = 80 % removed

NOT 50+40+33.3=123.3%

NOTES 1. Example flow diagram for this problem only.

2. There was no input or additional catchment flow between BMPs

THE QUESTIONS OF MEETING LOADING REDUCTIONS

- Can one BMP meet loading reduction target? Not always....
 - Wet ponds do not achieve 80% reduction of N, or must occupy large areas to meet only the P reduction (about 200 days residence time).
 - Thus use a treatment train of swales within the R/W before the wet pond.
 - Convert a wet pond to a reuse pond (stormwater harvesting).
 - There may not be sufficient area for a swale or need for reuse water. Thus use an up flow filter within a drainage pipe that you can provide storage and use a sorption media and in a treatment train.

WET POND & SWALES OR WET POND & REUSE WET POND & UP FLOW FILTER

- In zone 1, pan handle area, 60 inches of annual rain.
- 10 acre upland hardwood watershed going to a highway with 40% DCIA, CN=75.
- Use a "big" wet pond, annual residence time of 80 days.
- Wet pond does not get 80% removal percentages, 47% TN and 75% TP
- Thus use a treatment train approach.
- Consider a swale as pre treatment, infiltration rate of 3 in/hr, 4 foot bottom, running slope is 0.015, swale blocks 6 inches high.
- No additional input to wet pond, swale discharge is only input (one catchment configuration).
- Resulting removal is 80% TN and 90% TP.

GO TO EXAMPLES IN BMPTRAINS MODEL

Stormwater BMP Treatment Trains [BM	PTRAINS©]	CLICK HERE TO START	HELP - INTRODUCTION		
	INTRO	INTRODUCTION PAGE			
FDU Central Florida	Model requires	the use of Excel 2007 or newer	1) There is a users manual to help navigate this program and it is available at www.stormwater.ucf.edu		
This program is compiled from stormwater management publications and deliberations during a two year review of the stormwater rule in the State of Florida. Input from the members of the Florida Department of Environmental Protection Stormwater Review		P CENTRAL FLORIDA	2) This spreadsheet is best viewed at 1280 BY 1080 PIXELS screen resolution. If the maximum resolution of your computer screen is lower than 1280 BY 1080 PIXELS you can adjust the view in the Excel VIEW menu by zooming out to value smaller than 100 PERCENT.		
Technical Advisory Committee and the staff and consultants from the State Water Management Districts is appreciated.	Stoffilwatci Management 3) This spread Your analysis		3) This spreadsheet has incorporated ERROR MESSAGE WINDOWS. Your analysis is not valid unless ALL ERROR MESSAGE WINDOWS are clear.		
The State Department of Transportation provided guidance and resources to compile this program. The Stormwater Management Academy is responsible for the content of this program.	ACA "Managed Stor	DEMY	4) PRINTING INSTRUCTIONS: Print the page to MICROSOFT OFF DOCUMENT IMAGE WRITER (typically the default) or ADOBE PD save the page as an image document, then print the document yo saved.		
for the content of this program		90	5) Click on the button located on the top of this window titled CLICK HERE TO START to begin the analysis.		
Disclaimer: These workbooks were create	ed to assist in the	e analysis of Best Management P	ractice calculations. All users are responsible for validating the		

with specific information so that revisions can be made.

The authors of this program were Christopher Kuzlo, Marty Wanielista, Mike Hardin, and Ikiensinma Gogo-Abite. This is version 7.3 of the program, updated on June 20, 2014. Comments are appreciated.

HELP - HYDROGRAPH AND LEGACY PROGRAMS

SMADA ONLINE

TYPICAL FAILURE PROBLEMS ASSOCIATED WITH SIDE BANK FILTERS

Some Failure Problems

- Filters are difficult to access to properly clean
- Because of slow filtration or no filtration, exotics take over
- Often difficult or very costly to replace

Example Pond Retrofit Design for Upflow Filter

DESIGN by Watermark Engineering Group

UP-FLOW FILTER INSTALLATION BY SUNTREE TECHNOLOGIES

IMPROVED TREATMENT USING AN UP-FLOW FILTER WITH WET POND

Observations

- Filters can be designed to remove nitrogen without media replacement
- For phosphorus, media replacement time is specified
- Can be easily cleaned
- Can be used in BMP Treatment Train

UP-FLOW WITH WET DETENTION PERFORMANCE DATA

Summary Data

- Concentration data based
- Averages based on 6 events
- Construction cost less
 than under drains
- Average yearly based
 1.0 inch design for filter

Parameter	TN	TP	TSS
Average Influent Concentration (mg/L)	1.83	0.73	42.7
Average Filter Removal (%)	22	25	60
Average Pond Removal (%)	62	63	79
Average Pond + Filter Removal (%)	70	72	91
Average Annual System Performance	67	70	89

MEDIA

ROCK

USE THE BMPTRAINS MODEL TO CHECK FIELD DATA

Stormwater BMP Treatment Trains [BMI	PTRAINS©]	CLICK HERE TO START	HELP - INTRODUCTION		
	INTRO	DUCTION PAGE	HELP AND BACKGROUND		
FDU Cultural Florida	Model requires	s the use of Excel 2007 or newer	1) There is a users manual to help navigate this program and it is available at www.stormwater.ucf.edu		
This program is compiled from stormwater management publications and deliberations during a two year review of the stormwater rule in the State of Florida. Input from the members of the Florida Department of Environmental Protection Stormwater Review		P CENTRAL FLORIDA	2) This spreadsheet is best viewed at 1280 BY 1080 PIXELS screen resolution. If the maximum resolution of your computer screen is lower than 1280 BY 1080 PIXELS you can adjust the view in the Excel VIEW menu by zooming out to value smaller than 100 PERCENT.		
Technical Advisory Committee and the staff and consultants from the State Water Management Districts is appreciated.	Mana	Management	3) This spreadsheet has incorporated ERROR MESSAGE WINDOWS. Your analysis is not valid unless ALL ERROR MESSAGE WINDOWS are clear.		
The State Department of Transportation provided guidance and resources to compile this program. The Stormwater Management Academy is responsible for the content of this program.	a ACA	DEMY	4) PRINTING INSTRUCTIONS: Print the page to MICROSOFT OFFICE DOCUMENT IMAGE WRITER (typically the default) or ADOBE PDF, save the page as an image document, then print the document you saved.		
		90	5) Click on the button located on the top of this window titled CLICK HERE TO START to begin the analysis.		

Disclaimer: These workbooks were created to assist in the analysis of Best Management Practice calculations. All users are responsible for validating the accuracy of the internal calculations. If improvements are noted within this model, please e-mail Marty Wanielista, Ph.D., P.E. at martin.wanielista@ucf.edu with specific information so that revisions can be made.

The authors of this program were Christopher Kuzlo, Marty Wanielista, Mike Hardin, and Ikiensinma Gogo-Abite. This is version 7.3 of the program, updated on June 20, 2014. Comments are appreciated.

HELP - HYDROGRAPH AND LEGACY PROGRAMS

SMADA ONLINE

BMPTRAINS MODEL COMPARISON TO FIELD COLLECTED DATA NOTE: average annual removal

Percent Removal									
	TN (Field)	TN (Model)	TP (Field)	TP (Model)					
Pond + Filter	67	66	70	78					

Notes: 1. Pond input measured TP of 0.73 mg/L is high and 81% of TP is dissolved. Thus, can change or alter the effectiveness of the pond

2. A wet pond effectiveness for TN removal has been increased by about 30% (66-35%). If more pond water is treated by the filter before discharge the effectiveness can increase by about 40-45%.

SPRINGS AND ESTUARIES PROTECTION

FIELD DATA

FIELD DATA	FIELD DATA									
	рН			Turbidity				Temp		
Date:	Pond In	Filter In	Filter Out	Pond In	Filter In	Filter Out	Pond In	Filter In	Filter Out	
	SU	SU	SU	NTU	NTU	NTU	mg/L	mg/L	mg/L	٥C
3/25	7.14	7.25	7.05	10.5	2.50	2.25	7.20	6.09	0.61	22.5
4/8	7.20	7.40	7.30	39.0	5.47	4.52	7.08	4.09	1.14	24.0
4/14	7.15	7.20	7.05	4.40	1.19	1.12	7.13	7.54	0.27	25.2
4/15	6.90	6.85	6.8				6.23	7.10	0.59	27.0
4/28	6.76	6.67	6.45	32.5	2.85	1.96	5.29	5.80	0.36	29.1
AVG	7.03	7.07	6.93	21.6	3.00	2.46	6.59	6.10	0.74	25.6
% Change based on pond influent					86%	89%		7%	89%	
% Change	e due to fi	lter				18%			88%	

USING 5 SAMPLES: NOx (mg/L) IN=0.77 OUT=0.025 97% removal

Conclusions

- 1. BMPTRAINS model is used to estimate annual nutrient removal effectiveness and size BMPs in treatment systems.
- 2. It is available at no cost to the users.
- 3. The average annual effectiveness is site specific incorporating rainfall conditions of an area and combinations of BMPs.
- 4. BMPs can be analyzed in either series or parallel structure. The estimates stay "true" to the underlying rainfall conditions.

5. BMPTRAINS can be used to assess protection of Springs and Estuaries.

Seal of Approval

QUESTIONS, REMARKS AND DISCUSSION

THANK YOU!

