Sustainable Choices Are Everywhere!

Todd Kafka, PG
Florida Environmental
Permitting Conference
July 23, 2014

Outline

- Green and sustainable remediation background and considerations
- Opportunities for sustainable practices and examples
 - Site Assessment
 - Remedial Design and implementation
 - Remedy optimization

Remediation can be a Dirty Job!

EPA's "Green Remediation"

- EPA Green Remediation 2010
 - "The practice of considering all environmental effects of remedy implementation and incorporating options to minimize the environmental footprints of cleanup actions"
- Examples
 - Conserve natural resources
 - Reduce, reuse and recycle material
 - Minimize energy use, waste generation
 - Use renewable energy
 - Reduce air emissions
 - Water re-use and minimize consumption
 - Minimize habitat disturbance
 - Insitu better than invasive

Background

Increased interest in sustainability in all aspects of business

- Many companies have appointed Chief
 Sustainability Officers power sector, mfg, universities
- Common to see "sustainability", "green" in mission statements

Geosyntec¹

 Advancement from "program" or "initiative" to core operation

Guidance Available

- EPA and CLU-IN (www.clu-in.org) under green remediation
- Webinars via ITRC and others

Considerations for Sustainable & Green Practices

- What is motivation?
- Who are stakeholders?
- Is there a desired or pre-ordained outcome?
- Can sustainable practices be implemented step-wise?
- Are there BMPs in place? Can they be optimized?

Opportunities During Project Progression

1

Site Assessment

2

Remedial Design/Implementation

?

- Optimization
- Long-Term Monitoring

Site Assessment

- ITRC's Triad Approach incorporate sustainable practices in work strategies via
 - Systematic planning
 - Dynamic work strategies
 - Real-time data acquisition
- 2008 EPA (OSWER, EPA 542-R-08-002)
 - Waste minimization & IDW mgmt
 - Incorporate practices that rely on re-use/recycling
 - Equipment with low environmental impacts
 - Geophysical tools to reduce invasive work

Site Assessment Tools

- Direct push technology
 - Less IDW
 - Low energy
 - Shorter field durations
- Innovative real-time sensor technology
 - laser induced fluorescence
 - cone penetrometer testing
 - membrane interface probe
 - hydraulic profiling tool

K (ft/day)

Site Assessment Tools

- Geophysics GPR, EM, surface resistivity, seismic reflection & refraction
- Screening tools
 - XRF for metals in lieu of sample
 - Color-TEC groundwater sampler
 - Immunoassay kits
 - Organic vapor analyzers
- Passive sampling PDBs, hydrasleeves, snap samplers, soil gas samplers

Site Assessment Take-Home

• There are LOTS of opportunities for adopting sustainable practices!

Remedial Design – Passive Remedies

- Less energy intensive and environmentally disruptive than active remedies
- Rely on groundwater moving to treatment zone.
 - Insitu bioremediation microbial reactions to transform contaminants to benign products
 - Insitu chemical oxidation mass destruction via chemical injection

More Passive Remedies

- Phytoremediation root uptake, transpiration, biomass, minimal O&M
- Reactive barrier walls groundwater flow through reactive treatment zone in subsurface
- Monitored natural attenuation
- Sub-slab venting or passive vapor mitigation

Constructed Wetlands

- Mimics natural wetland system
 no chemical treatment
- Stormwater/wastewater flows through at low velocity
- Bioretention
 - Metals
 - BOD
- Viewshed &

greenspace

Biodiversity

Alternate Energy Sources

- Solar powered for low energy demands
 - free product recovery/belt skimmers
 - recirculation systems

Wind - passive soil venting, sub-slab vapor

mitigation

Alternate Energy Sources

- Geothermal
 - Provide alternative means of cooling for equipment
 - 150-200 ft per ton of cooling

Effluent Considerations

- Reuse of treatment effluent
 - Recirculation systems liquid or vapor
 - Reclaimed water, irrigation
 - Process water
 - Waste to energy (landfill gas)

Solid Waste Considerations

- Reuse of solid waste
 - Recycled asphalt millings for temporary cover of contaminated soils
 - Street sweepings asphalt and concrete, roadbase, medians
 - Re-use of concrete rubble for shore stabilization

Excavation - Transportation

- Onsite landfill and treatment
- No idling of trucks
- Efficient route-planning
- Stockpiling and sequencing of backfill delivery – fewer round trips

Remote Monitoring

- Reduces man power
- Varying degrees of data collection

- Improves reaction time → performance
- Low energy demands (solar)

O&M/Long-Term Monitoring

- Preventive maintenance
- Retrofit with more efficient components (submersible pumps, transfer pumps, variable frequency drives, cycling opportunities, blowers, etc.)
- Passive sampling techniques
- Waste minimization

Remedy Optimization

- Reasonable vs. expected performance
- Means to reduce energy & environmental footprints?
- Focused feasibility studies or remedial system evaluation for aging or poorly performing remedies
 - Re-visit CSM unresolved sources/source areas?
 - New technologies
 - Updated objectives (time & \$ spent)
 - Adjust ARARs
 - Employ GSR Metrics tip the balance?

Remedy Optimization

- Updated risk assessment and institutional controls
- Optimization tools MAROS, non-parametric statistics
 - Reduce monitoring frequency but preserve integrity
 - Remove redundancies in locations
 - Reduce parameters
 - Preserve site management objectives

Conclusions

- Sustainable and green practices can be made at multiple junctures throughout a project.
- Continued evaluation of remedy objectives, performance, and optimization are critical processes that can lead to sustainable choices, cost savings over the long run, and more site cleanups.

Thank You!

Questions/Comments?

Todd Kafka, PG

Geosyntec Consultants - Tampa 813-379-4396 (office) tkafka@geosyntec.com

