Florida Chamber Summer School July, 2014

Stormwater Treatment Wetlands

Chris Keller, P.E. Wetland Solutions, Inc.

Why Wetlands?

- Wetlands are the natural stormwater management systems in the landscape
- Wetlands remove or transform a wide range of pollutants found in urban runoff (BOD, TSS, N, P, pathogens, metals, hydrocarbons, etc.)

Stormwater Wetland Plant Communities

- Similar planting palette as wastewater wetlands
- Potentially wider range of hydrologic tolerance required
- Salt tolerance necessary in brackish/coastal systems

Typical Stormwater Wetland Layout

Conceptual Design for Multiple Benefits

Design Considerations

- System Location
 - In-line
 - Off-line
- Flow Delivery
 - Gravity
 - Pumping
- Outlet Design
 - Flexibility is important
- Wetland Hydrology
 - Too dry = soil oxidation, nutrient export, transitional/upland vegetation
 - Too wet = pond

Stormwater Design Basis

- Flow Characteristics
 - Rainfall
 - Infiltration
 - Runoff
- Pollutant Loads
 - Watershed characteristics
 - Estimated concentrations
 - Direct measurement
- Design Methods
 - Wetland:watershed area
 - Design storm detention
 - Annual averaging
 - Dynamic modeling

Method 1: Wetland/Watershed Area

- Measure area of drainage basin
- Apply selected Wetland to Watershed Area Ratio (WWAR), typically 2 to 5%
- Allocate wetland surface area to 20% pool and 80% marsh

Method 2: Design Storm Detention

- Measure area of drainage basin
- Find 90th percentile of rainfall quantity distribution
- Determine runoff coefficient
- Calculate design runoff volume
- Allocate wetland volume 40% pool and 60% marsh
- Allocate wetland surface area to 20% pool and 80% marsh (marsh depth = 0.3 x pool depth)

Method 3: Annual Averaging

- Estimate event mean concentrations of pollutants
- Compute HLR to meet water quality target using first-order equation
- Estimate runoff coefficient
- Calculate design annual runoff volume
- Allocate wetland surface area to 20% pool and 80% marsh and select appropriate water depths

Method 3: k-C* Model Fit to Boney Marsh, FL TP Data

Boney Marsh, Florida 0.05 **Best Fit** 0.045 Total Phosphorus (mg/L) Measured TP k = 39 m/yr 0.04 0.035 Estimated TP C* = 0.013 mg/L 0.03 0.025 0.02 0.015 0.01 0.005 0 0.80 0.00 0.20 0.40 0.60 1.00 **Fractional Distance**

Method 4: Dynamic Modeling

- Only available for TP
- Construct daily time series for flow, inflow concentration, rainfall, and ET
- Adjust wetland area in DSMTA Version 2 (www.wwwalker.net) to meet desired load or concentration reduction
- Future release of DMSTA for nitrogen species
- Phosphorus removal is often the areacontrolling parameter in wetlands, so goals for BOD, TSS, TN may be met by default

Method 4: DMSTA Version 2 Phosphorus Balance

Keys to Maximize Water Quality Benefits

- Hydraulic design depends on project goals
 - Load Reduction
 - Concentration Reduction
- Maximize internal hydraulic efficiency
- Minimize water depths in marsh
 - 6-12" for permanent pool
 - 18-24" during design storm event
- Limit open water to 10-20% of total surface area

FL Stormwater Wetland TSS Data

FL Wetland TN Data

FL Stormwater Wetland NOX Data

FL Stormwater Wetland TP Data

Detailed Study by Vegetation and Substrate Type

Outlet TSS vs. Vegetation Type

Outlet TP vs. Vegetation Type

Outlet TN vs. Vegetation Type

Outlet TSS vs. Substrate Type

Outlet TP vs. Substrate Type

Outlet TN vs. Substrate Type

Expansions of SW Wetland Technology

- Floating wetlands as add-ons in wet detention ponds
- LID modular systems
- Hybrid chemical treatment/wetland systems
- Soil amendments

Emerging SW Issues

- Effects of reclaimed water irrigation on stormwater systems (Harper 2012)
 - 2/3 of WWTP's produce secondary quality reclaimed water (TN: 2-15 times stronger than runoff; TP: 8-60 times stronger)
 - 1/3 of WWTP's produce tertiary quality reclaimed water (similar to high density residential runoff)
 - Tendency by homeowners to over-irrigate
- Dry retention favored in many areas but presumption of 100% load reduction is "Bad Science"

Dry Retention – Wetland Conversion for Nitrate Removal

Infiltrating Wetland Surface Water Nitrogen Concentrations

Infiltrating Wetland Groundwater Nitrate Concentrations

Infiltrating Wetland Shallow Groundwater Concentrations

Infiltration Rates

Questions

