Water/Wastewater Utility Perspective on North Florida Water Challenges

Rick Hutton, P.E.
Gainesville Regional Utilities
North Florida Utility Coordinating Group
Common Goals/Needs

- Meet water supply needs for people
- Protect/Restore Natural systems
Water Challenges

- Technically complex issues
 - Nutrient vs. flow impacts
 - Natural cycles vs. manmade impacts
 - Long range

- Growing population
 - Increasing needs for public supply, self supply, agriculture, etc.

- Funding limited
Utility Needs for Policy & Regulations

- Sound science based
- Well vetted w/ realistic cost impacts
- Fair & equitable
- Results oriented
- Consistency & stability
Recent Developments for North Florida

- Joint Regional Water Supply Plan
- MFLs
 - North Florida Southeast Georgia (NFSEG) Model
- 2016 Water Legislation
- Potential Reclaimed Water Legislation
North Florida Regional Water Supply Partnership

- Organized approach with stakeholder input for joint water supply plan
- Plan expected to provide robust list of potential projects
- North Florida Utility Coordinating Group members collectively submitted 99 projects totaling $370M to $480M over 20 yrs
North Florida Regional Water Supply Partnership

• Projects needed should be defined when MFLs & Recovery & Prevention Plans are set
• Critical MFLs currently being re-evaluated
 – Lakes Geneva and Brooklyn
 – Lower Santa Fe & Ichetucknee Rivers
 – Other MFLs

• North Florida Southeast Georgia (NFSEG) model key to Water Supply Plan and MFLs
North Florida Utility Group Water Use

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Daily Water Use (MGD)</th>
<th>Estimated Population Served</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>190</td>
<td>1,086,000</td>
</tr>
<tr>
<td>2007</td>
<td>190</td>
<td>1,100,000</td>
</tr>
<tr>
<td>2008</td>
<td>190</td>
<td>1,100,000</td>
</tr>
<tr>
<td>2009</td>
<td>190</td>
<td>1,100,000</td>
</tr>
<tr>
<td>2010</td>
<td>190</td>
<td>1,100,000</td>
</tr>
<tr>
<td>2011</td>
<td>190</td>
<td>1,100,000</td>
</tr>
<tr>
<td>2012</td>
<td>190</td>
<td>1,100,000</td>
</tr>
<tr>
<td>2013</td>
<td>151</td>
<td>1,215,000</td>
</tr>
<tr>
<td>2014</td>
<td>151</td>
<td>1,215,000</td>
</tr>
</tbody>
</table>
North Florida Southeast Georgia (NFSEG) Groundwater Model
Why do we need models?

• **Separating effects of rainfall vs. pumping is critical & difficult**
 – Short & Long-term weather patterns drive dramatic flow & level changes
 – Public tends to remember “the way things were”
 • Difficult to perceive weather trends & correlate them with flows & levels
Lower Santa Fe & Ichetucknee River MFLs

- **Droughts in 1990s & 2000s**
 - Unprecedented low rainfalls
 - Record low river & spring flows & levels
 - Public concern
Rainfall & Lower Santa Fe River Flows

- Monthly Rainfall (in)
- River Flow (2 yr Avg)
- Rainfall (2 yr Avg)

Year

River Flow (cfs)
Water Use in North Florida Region Flat

Average Daily Water Use (Million Gallons per Day)

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>508</td>
</tr>
<tr>
<td>1990</td>
<td>526</td>
</tr>
<tr>
<td>1995</td>
<td>470</td>
</tr>
<tr>
<td>2000</td>
<td>520</td>
</tr>
<tr>
<td>2005</td>
<td>497</td>
</tr>
<tr>
<td>2010</td>
<td>474</td>
</tr>
</tbody>
</table>
Lakes Brooklyn & Geneva

Wet period
(Perceived “normal”)

Dry period
Lake Brooklyn Water Level & Rainfall
Conclusions

• Rainfall variation dominate variations in flows & levels in these systems
 – Low flows in Santa Fe & Ichetucknee Rivers & springs driven by unprecedented drought in 1990s & 2000s
 – Keystone lake levels driven by multi-decadal rainfall patterns

• Even with sophisticated statistical analyses, difficult to discern effects from pumping vs. weather
Simplified Water Balances Do Not Work

• Pumping impacts on flows and levels generally not one for one
 – Depends on magnitude & distance from water body

• Evapotranspiration (ET)
 • ET ~68% of water budget vs. Pumping ~1-2%
 • Varies spatially
 • Varies significantly w/ rainfall and other factors
 • Mitigates for low rainfall, pumping, other stresses

• Return flows & other mitigating factors
Groundwater Modelling

• Understanding complex hydrologic systems requires complex models

• NFSEG Model
 – Expected to be significant step forward in modeling
 – Very complex
 – Collaborative development process
 – Needs to be well vetted before used for planning or regulatory decisions
2016 Water Legislation

• Some Key Provisions:
 – More organized approach for prioritizing funding major water supply projects
 – Consumptive use permit incentives for water conservation
 – Priority Focus Areas for Outstanding FL Springs
 • OSTDS Remediation Plan
 • Some concern about timeline & emergency rulemaking provision for MFLs for Outstanding FL Springs
 • Agriculture BMPs
 • Advanced Treatment Requirements for new WWTPs
Reclaimed Water

• FDEP Reclaimed Water Workgroup
• Florida national leader in reclaimed water
• Reclaimed water important component of water supply development
 – Should not set mandates on amount of reuse
 – Types & amount of reuse vary significantly by region due to geology, demographics, & proximity to potential reclaimed water users
 – Reuse systems require significant investment from utility ratepayers

#1
Reclaimed Water

• Interest/development of potable reuse
• Improve opportunities for reuse through funding & some policy changes
Conclusions

• Water supply & water quality issues are increasing concern statewide
• Funding improving but still limited
• To be successful, water policy must be
 – Sound science based
 – Equitable
 – Collaborative
 – Results based