Sustainable Choices Are Everywhere!

Todd Kafka, PG
Florida Environmental Permitting Conference
July 23, 2014
Outline

• Green and sustainable remediation background and considerations

• Opportunities for sustainable practices and examples
 – Site Assessment
 – Remedial Design and implementation
 – Remedy optimization
Remediation can be a Dirty Job!
EPA’s “Green Remediation”

- EPA Green Remediation 2010
 - “The practice of considering all environmental effects of remedy implementation and incorporating options to minimize the environmental footprints of cleanup actions”

- Examples
 - Conserve natural resources
 - Reduce, reuse and recycle material
 - Minimize energy use, waste generation
 - Use renewable energy
 - Reduce air emissions
 - Water re-use and minimize consumption
 - Minimize habitat disturbance
 - Insitu better than invasive
Background

Increased interest in sustainability in all aspects of business

• Many companies have appointed Chief Sustainability Officers – power sector, mfg, universities

• Common to see “sustainability”, “green” in mission statements

• Advancement from “program” or “initiative” to core operation
Guidance Available

• EPA and CLU-IN (www.clu-in.org) under green remediation
• Webinars via ITRC and others
Considerations for Sustainable & Green Practices

• What is motivation?
• Who are stakeholders?
• Is there a desired or pre-ordained outcome?
• Can sustainable practices be implemented step-wise?
• Are there BMPs in place? Can they be optimized?
Opportunities During Project Progression

1. Site Assessment
2. Remedial Design/Implementation
3. Optimization
 • Long-Term Monitoring
Site Assessment

• ITRC’s Triad Approach – incorporate sustainable practices in work strategies via
 – Systematic planning
 – Dynamic work strategies
 – Real-time data acquisition

• 2008 EPA (OSWER, EPA 542-R-08-002)
 – Waste minimization & IDW mgmt
 – Incorporate practices that rely on re-use/recycling
 – Equipment with low environmental impacts
 – Geophysical tools to reduce invasive work
Site Assessment Tools

• Direct push technology
 – Less IDW
 – Low energy
 – Shorter field durations

• Innovative real-time sensor technology
 – laser induced fluorescence
 – cone penetrometer testing
 – membrane interface probe
 – hydraulic profiling tool
Site Assessment Tools

- Geophysics – GPR, EM, surface resistivity, seismic reflection & refraction
- Screening tools
 - XRF for metals in lieu of sample
 - Color-TEC groundwater sampler
 - Immunoassay kits
 - Organic vapor analyzers
- Passive sampling – PDBs, hydrasleeves, snap samplers, soil gas samplers
Site Assessment Take-Home

• There are LOTS of opportunities for adopting sustainable practices!
Remedial Design – Passive Remedies

• Less energy intensive and environmentally disruptive than active remedies

• Rely on groundwater moving to treatment zone.
 – Insitu bioremediation – microbial reactions to transform contaminants to benign products
 – Insitu chemical oxidation – mass destruction via chemical injection
More Passive Remedies

- Phytoremediation – root uptake, transpiration, biomass, minimal O&M
- Reactive barrier walls – groundwater flow through reactive treatment zone in subsurface
- Monitored natural attenuation
- Sub-slab venting or passive vapor mitigation
Constructed Wetlands

- Mimics natural wetland systems - no chemical treatment
- Stormwater/wastewater flows through at low velocity
- Bioretention
 - Metals
 - BOD
- Viewshed & greenspace
- Biodiversity
Alternate Energy Sources

• Solar powered for low energy demands
 – free product recovery/belt skimmers
 – recirculation systems

• Wind - passive soil venting, sub-slab vapor mitigation
Alternate Energy Sources

- Geothermal
 - Provide alternative means of cooling for equipment
 - 150-200 ft per ton of cooling
Effluent Considerations

• Reuse of treatment effluent
 – Recirculation systems – liquid or vapor
 – Reclaimed water, irrigation
 – Process water
 – Waste to energy (landfill gas)
Solid Waste Considerations

• Reuse of solid waste
 – Recycled asphalt millings for temporary cover of contaminated soils
 – Street sweepings – asphalt and concrete, roadbase, medians
 – Re-use of concrete rubble for shore stabilization
Excavation - Transportation

- Onsite landfill and treatment
- No idling of trucks
- Efficient route-planning
- Stockpiling and sequencing of backfill delivery – fewer round trips
Remote Monitoring

• Reduces man power
• Varying degrees of data collection
• Improves reaction time \rightarrow performance
• Low energy demands (solar)
O&M/Long-Term Monitoring

- Preventive maintenance
- Retrofit with more efficient components (submersible pumps, transfer pumps, variable frequency drives, cycling opportunities, blowers, etc.)
- Passive sampling techniques
- Waste minimization
Remedy Optimization

• Reasonable vs. expected performance
• Means to reduce energy & environmental footprints?
• Focused feasibility studies or remedial system evaluation for aging or poorly performing remedies
 – Re-visit CSM - unresolved sources/source areas?
 – New technologies
 – Updated objectives (time & $ spent)
 – Adjust ARARs
 – Employ GSR Metrics – tip the balance?
Remedy Optimization

• Updated risk assessment and institutional controls
• Optimization tools – MAROS, non-parametric statistics
 – Reduce monitoring frequency but preserve integrity
 – Remove redundancies in locations
 – Reduce parameters
 – Preserve site management objectives
Conclusions

• Sustainable and green practices can be made at multiple junctures throughout a project.

• Continued evaluation of remedy objectives, performance, and optimization are critical processes that can lead to sustainable choices, cost savings over the long run, and more site cleanups.
Thank You!

Questions/Comments?

Todd Kafka, PG
Geosyntec Consultants - Tampa
813-379-4396 (office)
tkafka@geosyntec.com